Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.264
Filtrar
1.
COPD ; 21(1): 2329282, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38622983

RESUMO

COPD is an inflammatory lung disease that limits airflow and remodels the pulmonary vascular system. This study delves into the therapeutic potential and mechanistic underpinnings of Panax notoginseng Saponins (PNS) in alleviating inflammation and pulmonary vascular remodeling in a COPD rat model. Symmap and ETCM databases provided Panax notoginseng-related target genes, and the CTD and DisGeNET databases provided COPD-related genes. Intersection genes were subjected to protein-protein interaction analysis and pathway enrichment to identify downstream pathways. A COPD rat model was established, with groups receiving varying doses of PNS and a Roxithromycin control. The pathological changes in lung tissue and vasculature were examined using histological staining, while molecular alterations were explored through ELISA, RT-PCR, and Western blot. Network pharmacology research suggested PNS may affect the TLR4/NF-κB pathway linked to COPD development. The study revealed that, in contrast to the control group, the COPD model exhibited a significant increase in inflammatory markers and pathway components such as TLR4, NF-κB, HIF-1α, VEGF, ICAM-1, SELE mRNA, and serum TNF-α, IL-8, and IL-1ß. Treatment with PNS notably decreased these markers and mitigated inflammation around the bronchi and vessels. Taken together, the study underscores the potential of PNS in reducing lung inflammation and vascular remodeling in COPD rats, primarily via modulation of the TLR4/NF-κB/HIF-1α/VEGF pathway. This research offers valuable insights for developing new therapeutic strategies for managing and preventing COPD.


Assuntos
Panax notoginseng , Doença Pulmonar Obstrutiva Crônica , Saponinas , Ratos , Animais , Saponinas/farmacologia , Saponinas/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , NF-kappa B/metabolismo , Panax notoginseng/metabolismo , Receptor 4 Toll-Like/genética , Fator A de Crescimento do Endotélio Vascular/genética , Remodelação Vascular , Pulmão , Inflamação/tratamento farmacológico
2.
J Ethnopharmacol ; 328: 118080, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38521426

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The use of antineoplastic drugs, such as cisplatin, in clinical practice can cause adverse effects in patients, such as liver injury, which limits their long-term use. Therefore, there is an urgent need to develop alternative therapeutic strategies or drugs to minimize cisplatin-induced liver injury. Huangqi, the root of Astragalus membranaceus, is extensively used in traditional Chinese medicine (TCM) and has been employed in treating diverse liver injuries. Astragalus membranaceus contains several bioactive constituents, including triterpenoid saponins, one of which, astragaloside IV (ASIV), has been reported to have anti-inflammatory and antioxidant stress properties. However, its potential in ameliorating cisplatin-induced liver injury has not been explored. AIM OF THE STUDY: The objective of this study was to examine the mechanism by which ASIV protects against cisplatin-induced liver injury. MATERIALS AND METHODS: This study established a model of cisplatin-induced liver injury in mice, followed by treatment with various doses of astragaloside IV (40 mg/kg, 80 mg/kg). In addition, a model of hepatocyte ferroptosis in AML-12 cells was established using RSL3. The mechanism of action of astragaloside IV was investigated using a range of methods, including Western blot assay, qPCR, immunofluorescence, histochemistry, molecular docking, and high-content imaging system. RESULTS: The findings suggested a significant improvement in hepatic injury, inflammation and oxidative stress phenotypes with the administration of ASIV. Furthermore, network pharmacological analyses provided evidence that a major pathway for ASIV to attenuate cisplatin-induced hepatic injury entailed the cell death cascade pathway. It was observed that ASIV effectively inhibited ferroptosis both in vivo and in vitro. Subsequent experimental outcomes provided further validation of ASIV's ability to hinder ferroptosis through the inhibition of PPARα/FSP1 signaling pathway. The current findings suggest that ASIV could function as a promising phytotherapy composition to alleviate cisplatin-induced liver injury. CONCLUSIONS: The current findings suggest that astragaloside IV could function as a promising phytotherapy composition to alleviate cisplatin-induced liver injury.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Ferroptose , Saponinas , Triterpenos , Humanos , Camundongos , Animais , Cisplatino/toxicidade , Simulação de Acoplamento Molecular , Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , Saponinas/farmacologia , Saponinas/uso terapêutico , Saponinas/química , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Triterpenos/química
3.
Int Immunopharmacol ; 130: 111749, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38430804

RESUMO

AIMS: Saikosaponin F (SsF) is one of the major active ingredients of Radix Bupleuri, an herb widely used in the treatment of depression. Studies have shown that dry eye disease often occurs together with depression. The aim of this study is to investigate whether SsF can improve depression-associated dry eye disease and explore the underlying mechanism. METHODS: Behavioral test was used to verify the effect of SsF on CUMS-induced depression-like behaviors in mice. Corneal fluorescein staining, phenol red cotton thread test and periodic acid-Schiff (PAS) staining were used to observe the effect of SsF on depression-associated dry eye disease. Western blot (WB) was performed to observe the expression of TAK1 protein and key proteins of NF-κB and MAPK (P38) inflammatory pathways in the hippocampus and cornea. Immunohistochemical staining was used to observe the expression of microglia, and immunoprecipitation was used to observe K63-linked TAK1 ubiquitination. Subsequently, we constructed a viral vector sh-TAK1 to silence TAK1 protein to verify whether SsF exerted its therapeutic effect based on TAK1. The expression of inflammatory factors such as IL-1ß, TNF-α and IL-18 in hippocampus and cornea were detected by ELISA. Overexpression of TRIM8 (OE-TRIM8) by viral vector was used to verify whether SsF improved depression-associated dry eye disease based on TRIM8. RESULTS: SsF treatment significantly improved the depression-like behavior, increased tear production and restored corneal injury in depression-related dry eye model mice. SsF treatment downregulated TAK1 expression and TRIM8-induced K63-linked TAK1 polyubiquitination, while inhibiting the activation of NF-κB and MAPK (P38) inflammatory pathways and microglial expression. In addition, selective inhibition of TAK1 expression ameliorated depression-associated dry eye disease, while overexpression of TRIM8 attenuated the therapeutic effect of SsF on depression-associated dry eye disease. CONCLUSION: SsF inhibited the polyubiquitination of TAK1 by acting on TRIM8, resulting in the downregulation of TAK1 expression, inhibition of inflammatory response, and improvement of CUMS-induced depression-associated dry eye disease.


Assuntos
Antidepressivos , Depressão , Síndromes do Olho Seco , MAP Quinase Quinase Quinases , NF-kappa B , Ácido Oleanólico , Saponinas , Ubiquitina-Proteína Ligases , Animais , Masculino , Camundongos , Depressão/complicações , Depressão/tratamento farmacológico , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/etiologia , Inflamação/tratamento farmacológico , MAP Quinase Quinase Quinases/metabolismo , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso , NF-kappa B/metabolismo , Ácido Oleanólico/análogos & derivados , Saponinas/farmacologia , Saponinas/uso terapêutico , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico
4.
J Ethnopharmacol ; 327: 118049, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38484954

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Liriope spicata Lour., a species listed in the catalogue of 'Medicinal and Edible Homologous Species', is traditionally used for the treatment of fatigue, restlessness, insomnia and constipation. AIM OF THE STUDY: This study is aimed to evaluate the sedative and hypnotic effect of the saponins from a natural plant L. spicata Lour. in vivo. MATERIALS AND METHODS: The total saponin (LSTS) and purified saponin (LSPS) were extracted from L. spicata, followed by a thorough analysis of their major components using the HPLC-MS. Subsequently, the therapeutic efficacy of LSTS and LSPS was evaluated by the improvement of anxiety and depression behaviors of the PCPA-induced mice. RESULTS: LSTS and LSPS exhibited similar saponin compositions but differ in their composition ratios, with liriopesides-type saponins accounting for a larger proportion in LSTS. Studies demonstrated that both LSTS and LSPS can extend sleep duration and immobility time, while reducing sleep latency in PCPA-induced mice. However, there was no significant difference in weight change among the various mice groups. Elisa results indicated that the LSTS and LSPS could decrease levels of NE, DA, IL-6, and elevate the levels of 5-HT, NO, PGD2 and TNF-α in mice plasma. LSTS enhanced the expression of neurotransmitter receptors, while LSPS exhibited a more pronounced effect in regulating the expression of inflammatory factors. In conclusion, the saponins derived from L. spicata might hold promise as ingredients for developing health foods with sedative and hypnotic effects, potentially related to the modulation of serotonergic and GABAAergic neuron expression, as well as immunomodulatory process.


Assuntos
Saponinas , Distúrbios do Início e da Manutenção do Sono , Animais , Camundongos , Hipnóticos e Sedativos/farmacologia , Hipnóticos e Sedativos/uso terapêutico , Distúrbios do Início e da Manutenção do Sono/induzido quimicamente , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Saponinas/farmacologia , Saponinas/uso terapêutico , Plantas Comestíveis , Ansiedade
5.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 128-136, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38430031

RESUMO

As the main active ingredient of Astragalus, Astragaloside IV (AS-IV) can ameliorate pulmonary fibrosis. In this experiment, we studied how AS-IV reduces idiopathic pulmonary fibrosis (IPF). Bleomycin (BLM) or TGF-ß1 was treated in mice or alveolar epithelial cells to mimic IPF in vivo as well as in vitro. ASV-IV alleviated levels of inflammatory cytokines and fibrosis markers in IPF model. Through detection of autophagy-related genes, ASV-IV was observed to induce autophagy in IPF. Besides, ASV-IV inhibited miR-21 expression in IPF models, and overexpression of miR-21 could reverse the protective potential of ASV-IV on IPF. PTEN was targeted by miR-21 and was up-regulated by ASV-IV in IPF models. In addition, levels of inflammatory cytokines and fibrosis markers, autophagy, as well as the PI3K/AKT/mTOR pathway regulated by ASV-IV could be neutralized after treatment with autophagy inhibitors, miR-21 mimics, or si-PTEN. Our study demonstrates that ASV-IV inhibits IPF through activation of autophagy by miR-21-mediated PTEN/PI3K/AKT/mTOR pathway, suggesting that ASV-IV could be acted to be a promising therapeutic method for IPF.


Assuntos
Fibrose Pulmonar Idiopática , MicroRNAs , Saponinas , Triterpenos , Animais , Camundongos , Autofagia/efeitos dos fármacos , Fibrose , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Saponinas/farmacologia , Saponinas/uso terapêutico , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Triterpenos/farmacologia , Triterpenos/uso terapêutico , PTEN Fosfo-Hidrolase/efeitos dos fármacos , PTEN Fosfo-Hidrolase/metabolismo
6.
J Cell Mol Med ; 28(6): e18146, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38426932

RESUMO

Acne vulgaris represents a chronic inflammatory condition, the pathogenesis of which is closely associated with the altered skin microbiome. Recent studies have implicated a profound role of Gram-negative bacteria in acne development, but there is a lack of antiacne agents targeting these bacteria. Polyphyllins are major components of Rhizoma Paridis with great anti-inflammatory potential. In this study, we aimed to evaluate the antiacne effects and the underlying mechanisms of PPH and a PPH-enriched Rhizoma Paridis extract (RPE) in treating the Gram-negative bacteria-induced acne. PPH and RPE treatments significantly suppressed the mRNA and protein expressions of interleukin (IL)-1ß and IL-6 in lipopolysaccharide (LPS)-induced RAW 264.7 and HaCaT cells, along with the intracellular reactive oxygen species (ROS) generation. Furthermore, PPH and RPE inhibited the nuclear translocation of nuclear factor kappa-B (NF-κB) P65 in LPS-induced RAW 264.7 cells. Based on molecular docking, PPH could bind to kelch-like ECH-associated protein 1 (KEAP1) protein. PPH and RPE treatments could activate nuclear factor erythroid 2-related factor 2 (NRF2) and upregulate haem oxygenase-1 (HO-1). Moreover, RPE suppressed the mitogen-activated protein kinase (MAPK) pathway. Therefore, PPH-enriched RPE showed anti-inflammatory and antioxidative effects in vitro, which is promising for alternative antiacne therapeutic.


Assuntos
Acne Vulgar , Saponinas , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lipopolissacarídeos/efeitos adversos , Saponinas/farmacologia , Saponinas/uso terapêutico , Simulação de Acoplamento Molecular , Anti-Inflamatórios/uso terapêutico , NF-kappa B/metabolismo , Bactérias Gram-Negativas/metabolismo , Acne Vulgar/tratamento farmacológico , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Inflamação/metabolismo
7.
Phytother Res ; 38(4): 2007-2022, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38372176

RESUMO

This review highlights the increasing interest in one of the natural compounds called saponins, for their potential therapeutic applications in addressing inflammation which is a key factor in various chronic diseases. It delves into the molecular mechanisms responsible for the anti-inflammatory effects of these amphiphilic compounds, prevalent in plant-based foods and marine organisms. Their structures vary with soap-like properties influencing historical uses in traditional medicine and sparking renewed scientific interest. Recent research focuses on their potential in chronic inflammatory diseases, unveiling molecular actions such as NF-κB and MAPK pathway regulation and COX/LOX enzyme inhibition. Saponin-containing sources like Panax ginseng and soybeans suggest novel anti-inflammatory therapies. The review explores their emerging role in shaping the gut microbiome, influencing composition and activity, and contributing to anti-inflammatory effects. Specific examples, such as Panax notoginseng and Gynostemma pentaphyllum, illustrate the intricate relationship between saponins, the gut microbiome, and their collective impact on immune regulation and metabolic health. Despite promising findings, the review emphasizes the need for further research to comprehend the mechanisms behind anti-inflammatory effects and their interactions with the gut microbiome, underscoring the crucial role of a balanced gut microbiome for optimal health and positioning saponins as potential dietary interventions for managing chronic inflammatory conditions.


Assuntos
Panax notoginseng , Saponinas , Humanos , Saponinas/uso terapêutico , Panax notoginseng/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , NF-kappa B
8.
Pharmacol Res ; 201: 107090, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309381

RESUMO

Depression is a major global health issue that urgently requires innovative and precise treatment options. In this context, saikosaponin has emerged as a promising candidate, offering a variety of therapeutic benefits that may be effective in combating depression. This review delves into the multifaceted potential of saikosaponins in alleviating depressive symptoms. We summarized the effects of saikosaponins on structural and functional neuroplasticity, elaborated the regulatory mechanism of saikosaponins in modulating key factors that affect neuroplasticity, such as inflammation, the hypothalamic-pituitary-adrenal (HPA) axis, oxidative stress, and the brain-gut axis. Moreover, this paper highlights existing gaps in current researches and outlines directions for future studies. A detailed plan is provided for the future clinical application of saikosaponins, advocating for more targeted researches to speed up its transition from preclinical trials to clinical practice.


Assuntos
Ácido Oleanólico , Ácido Oleanólico/análogos & derivados , Saponinas , Depressão/tratamento farmacológico , Saponinas/farmacologia , Saponinas/uso terapêutico , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Plasticidade Neuronal
9.
Gene ; 909: 148305, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38403172

RESUMO

OBJECTIVE: The objective of this study was to assess the impact of the total saponins of Panax japonicus (TSPJ) on Type 2 diabetes mellitus (T2DM). RESULTS: The intervention of TSPJ was found to have the ability to reverse physiological indicators associated with T2DM, while also enhancing the expression of genes involved in glucose metabolism and intestinal homeostasis. Additionally, alterations in the composition of the gut microbiota were observed. Based on the findings of experimental results and network pharmacology analysis, it is evident that vascular endothelial growth factor A (VEGFA) serves as a prominent shared target between TSPJ and diabetes. The outcomes observed in T2DM mice overexpressing VEGFA align with those observed in T2DM mice treated with TSPJ. CONCLUSIONS: TSPJ administration and VEGFA overexpression yield similar effects on T2DM in mice. Thus, in terms of mechanism, by upregulating the expression of VEGFA, TSPJ may ameliorate metabolic imbalance, preserve intestinal homeostasis, and lessen the symptoms of type 2 diabetes. The findings demonstrated the viability of using VEGFA as a type 2 diabetes therapy option and offered important insights into the therapeutic mechanisms by TSPJ in the management of T2DM. To determine the exact mechanisms behind the effects of TSPJ and VEGFA and to assess their potential therapeutic uses, more research efforts are necessary.


Assuntos
Diabetes Mellitus Tipo 2 , Panax , Saponinas , Animais , Camundongos , Saponinas/farmacologia , Saponinas/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
10.
Biochem Biophys Res Commun ; 703: 149648, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38368675

RESUMO

Our prior investigation has confirmed that the anti-hepatocellular carcinoma activity of the plant saponin, specifically Uttroside B (Utt-B), derived from the leaves of Solanum nigrum Linn. This study concentrated on formulating a novel biocompatible nanocarrier utilizing Extracellular vesicles (EVs) to enhance the delivery of plant saponin into cells. The physicochemical attributes of Extracellular Vesicles/UttrosideB (EVs/Utt-B) were comprehensively characterized through techniques such as Transmission Electron Microscopy (TEM) and Fourier-transform infrared spectroscopy (FTIR). Despite the promising therapeutic potential of this uttroside B, mechanistic know-how about its entry into cells is still in its infancy. Our research sheds light on the extracellular vesicle-mediated mechanism facilitating the entry of the saponin into cells, a phenomenon confirmed through the use of by confocal microscopy. We further analysed drug-releasing kinetics and simulated the Pharmacokinetics by PBPK modelling. The simulated pharmacokinetics revealed the bioavailability of Uttroside-B in oral administration against intravenous administration.


Assuntos
Carcinoma Hepatocelular , Vesículas Extracelulares , Neoplasias Hepáticas , Saponinas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Microscopia Eletrônica de Transmissão , Saponinas/uso terapêutico
11.
J Ethnopharmacol ; 325: 117885, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38331123

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Timosaponin BⅡ (TBⅡ) is one of the main active components of the traditional Chinese medicine Anemarrhena asphodeloides, and it is a steroidal saponin with various pharmacological activities such as anti-oxidation, anti-inflammatory and anti-apoptosis. However, its role in acute ulcerative colitis remains unexplored thus far. AIM OF THE STUDY: This study aims to investigate the protective effect of TBⅡ against dextran sulfate sodium (DSS)-induced ulcerative colitis in mice and elucidate its underlying mechanisms. METHODS: Wild-type (WT) and NLRP3 knockout (NLRP3-/-) mice were applied to evaluate the protective effect of TBⅡ in DSS-induced mice colitis. Pharmacological inhibition of NLRP3 or adenovirus-mediated NLRP3 overexpression in bone marrow-derived macrophages (BMDM) from WT mice and colonic epithelial HCoEpiC cells was used to assess the role of TBⅡ in LPS + ATP-induced cell model. RNA-seq, ELISA, western blots, immunofluorescence staining, and expression analysis by qPCR were performed to examine the alterations of colonic NLRP3 expression in DSS-induced colon tissues and LPS + ATP-induced cells, respectively. RESULTS: In mice with DSS-induced ulcerative colitis, TBⅡ treatment attenuated clinical symptoms, repaired the intestinal mucosal barrier, reduced inflammatory infiltration, and alleviated colonic inflammation. RNA-seq analysis and protein expression levels demonstrated that TBⅡ could prominently inhibit NLRP3 signaling. TBⅡ-mediated NLRP3 inhibition was associated with alleviating intestinal permeability and inflammatory response via the blockage of communication between epithelial cells and macrophages, probably in an NLRP3 inhibition mechanism. However, pharmacological inhibition of NLRP3 by MCC950 or Ad-NLRP3 mediated NLRP3 overexpression significantly impaired the TBⅡ-mediated anti-inflammatory effect. Mechanistically, TBⅡ-mediated NLRP3 inhibition may be partly associated with the suppression of NF-κB, a master pro-inflammatory factor for transcriptional regulation of NLRP3 expression in the priming step. Moreover, co-treatment TBⅡ with NF-κB inhibitor BAY11-7082 partly impaired TBⅡ-mediated NLRP3 inhibition, and consequently affected the IL-1ß mature and secretion. Importantly, TBⅡ-mediated amelioration was not further enhanced in NLPR3-/- mice. CONCLUSION: TBⅡ exerted a prominent protective effect against DSS-induced colitis via regulation of alleviation of intestinal permeability and inflammatory response via the blockage of crosstalk between epithelial cells and macrophages in an NLRP3-mediated inhibitory mechanism. These beneficial effects could make TBⅡ a promising drug for relieving colitis.


Assuntos
Colite Ulcerativa , Colite , Saponinas , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , NF-kappa B/metabolismo , Lipopolissacarídeos/metabolismo , Inflamassomos/metabolismo , Colite/tratamento farmacológico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/efeitos adversos , Saponinas/farmacologia , Saponinas/uso terapêutico , Trifosfato de Adenosina/metabolismo , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL , Colo/metabolismo
12.
J Ethnopharmacol ; 326: 117778, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38310990

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In China, the Chinese patent drug Realgar-Indigo naturalis Formula (RIF) is utilized for the therapy of acute promyelocytic leukemia (APL). Comprising four traditional Chinese herb-Realgar, Indigo naturalis, Salvia miltiorrhiza, and Pseudostellaria heterophylla-it notably includes tetra-arsenic tetra-sulfide, indirubin, tanshinone IIa, and total saponins of Radix Pseudostellariae as its primary active components. Due to its arsenic content, RIF distinctly contributes to the therapy for APL. However, the challenge of arsenic resistance in APL patients complicates the clinical use of arsenic agents. Interestingly, RIF demonstrates a high remission rate in APL patients, suggesting that its efficacy is not significantly compromised by arsenic resistance. Yet, the current state of research on RIF's ability to reverse arsenic resistance remains unclear. AIM OF THE STUDY: To investigate the mechanism of different combinations of the compound of RIF in reversing arsenic resistance in APL. MATERIALS AND METHODS: The present study utilized the arsenic-resistant HL60-PMLA216V-RARα cell line to investigate the effects of various RIF compounds, namely tetra-arsenic tetra-sulfide (A), indirubin (I), tanshinone IIa (T), and total saponins of Radix Pseudostellariae (S). The assessment of cell viability, observation of cell morphology, and evaluation of cell apoptosis were performed. Furthermore, the mitochondrial membrane potential, changes in the levels of PMLA216V-RARα, apoptosis-related factors, and the PI3K/AKT/mTOR pathway were examined, along with autophagy in all experimental groups. Meanwhile, we observed the changes about autophagy after blocking the PI3K or mTOR pathway. RESULTS: Tanshinone IIa, indirubin and total saponins of Radix Pseudostellariae could enhance the effect of tetra-arsenic tetra-sulfide down-regulating PMLA216V-RARα, and the mechanism was suggested to be related to inhibiting mTOR pathway to activate autophagy. CONCLUSIONS: We illustrated that the synergistic effect of different compound combinations of RIF can regulate autophagy through the mTOR pathway, enhance cell apoptosis, and degrade arsenic-resistant PMLA216V-RARα.


Assuntos
Abietanos , Arsênio , Arsenicais , Medicamentos de Ervas Chinesas , Leucemia Promielocítica Aguda , Saponinas , Humanos , Arsênio/efeitos adversos , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/induzido quimicamente , Fosfatidilinositol 3-Quinases , Arsenicais/farmacologia , Arsenicais/uso terapêutico , Sulfetos/farmacologia , Sulfetos/uso terapêutico , Saponinas/uso terapêutico
13.
J Neuroimmunol ; 387: 578281, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38198981

RESUMO

BACKGROUND: Polygalasaponin F (PGSF), an oleanane triterpenoid saponin extracted from Polygala japonica, has been demonstrated with neuroprotective effect. However, the therapeutic effects and mechanisms of PGSF on focal ischemia remain unknown; METHODS: In this study, male Sprague Dawley (SD) rats aged 6-8 weeks were initially selected to establish a rat model of middle cerebral artery occlusion (MCAO) to evaluate the therapeutic effect of PGSF intervention and to investigate the impact of PGSF on the thioredoxin-interacting protein/NOD-, LRR-, and pyrin domain-containing protein 3 (TXNIP/NLRP3) inflammatory pathway. Secondly, brain neuron cells were isolated, and the cells received oxygen-glucose deprivation/reoxygenation (OGD/R) culture to establish the cell injury model in vitro. The mechanism of PGSF on the TXNIP/NLRP3 pathway was further validated; RESULTS: Our results showed that PGSF treatment reduced neurological scores, brain tissue water content and infarct volume and ameliorated the pathological changes in cerebral cortex in MCAO-induced focal ischemia rats. The TNF-α, IL-1ß and IL-6 levels decreased in MCAO-induced focal ischemia rats after PGSF treatment. Moreover, PGSF down-regulated the protein expressions of TXNIP, NLRP3, ASC, cleaved caspase-1, IL-1ß, and IL-18 in MCAO-induced focal ischemia rats. Meanwhile, PGSF treatment inhibited apoptosis, and reduced the levels of ROS, inflammatory cytokine and TXNIP/NLRP3 pathway-related proteins (TXNIP, NLRP3, ASC, cleaved caspase-1, IL-1ß, and IL-18) in OGD/R-induced neuronal injury cells. Finally, PGSF treatment also disrupted the interaction between NLRP3 and TXNIP in vitro; CONCLUSIONS: Our study demonstrated the therapeutic effects of PGSF on MCAO-induced focal ischemia rats. Moreover, the neuroprotective mechanism of PGSF on focal ischemia was associated with the inhibition of TXNIP/NLRP3 signaling pathway.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Saponinas , Triterpenos , Ratos , Animais , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR , Interleucina-18 , Ratos Sprague-Dawley , Inflamassomos , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Transdução de Sinais , Saponinas/farmacologia , Saponinas/uso terapêutico , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Isquemia Encefálica/metabolismo , Caspase 1/metabolismo , Proteínas de Ciclo Celular
14.
J Nat Med ; 78(2): 393-402, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38175326

RESUMO

Akebia saponin D (ASD) is a bioactive triterpenoid saponin extracted from Dipsacus asper Wall. ex DC.. This study aimed to investigate the effects of ASD on allergic airway inflammation. Human lung epithelial BEAS-2B cells and bone marrow-derived mast cells (BMMCs) were pretreated with ASD (50, 100 and 200 µΜ) and AMPK activator 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside (AICAR) (1 mM), and then stimulated with lipopolysaccharide (LPS) or IL-33. Pretreatment with ASD and AICAR significantly inhibited TNF-α and IL-6 production from BEAS-2B cells, and IL-13 production from BMMCs. Moreover, pretreatment with ASD and AICAR significantly increased p-AMPK expression in BEAS-2B cells. Inhibition of AMPK by siRNA and compound C partly abrogated the suppression effect of ASD on TNF-α, IL-6, and IL-13 production. Asthma murine model was induced by ovalbumin (OVA) challenge and treated with ASD (150 and 300 mg/kg) or AICAR (100 mg/kg). Infiltration of eosinophils, neutrophils, monocytes, and lymphocytes, and production of TNF-α, IL-6, IL-4, and IL-13 were attenuated in ASD and AICAR treated mice. Lung histopathological changes were also ameliorated after ASD and AICAR treatment. Additionally, it showed that treatment with ASD and AICAR increased p-AMPK expression in the lung tissues. In conclusion, ASD exhibited protective effects on allergic airway inflammation through the induction of AMPK activation.


Assuntos
Saponinas , Fator de Necrose Tumoral alfa , Camundongos , Humanos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Interleucina-6 , Interleucina-13 , Inflamação/tratamento farmacológico , Saponinas/farmacologia , Saponinas/uso terapêutico , Camundongos Endogâmicos BALB C
15.
Chem Biol Drug Des ; 103(1): e14423, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38230773

RESUMO

Astragaloside IV (AS-IV) has exhibited pivotal anti-cancer efficacy in multiple types of cancer, including colorectal cancer (CRC). Meanwhile, circular RNA (circRNA) circ_0001615 has been reported to be involved in the malignant development of CRC. Herein, this study is expected to figure out the interaction between circ_0001615 and AS-IV on CRC progression. The 50% inhibition concentration (IC50), proliferation, apoptosis, and migration were detected by Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, and wound healing assays. The expression of related proteins was examined by western blot. Circ_0001615, microRNA-873-5p (miR-873-5p), and LIM and SH3 protein 1 (LASP1) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). The binding between miR-873-5p and circ_0001615, or LASP1, was predicted by Starbase, followed by verification by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. The biological role of circ_0001615 and AS-IV on CRC tumor growth was detected by the xenograft tumor model in vivo. According to the IC50 of AS-IV in CRC cells, the 100 ng/mL AS-IV treatment for 24 h was chosen for the following research: Our data confirmed that AS-IV is a beneficial anti-cancer agent in CRC cells. Furthermore, circ_0001615 and LASP1 expression were increased, and miR-873-5p was decreased in CRC patients and cell lines, whereas their expression exhibited an opposite trend in AS-IV-treated cells. Functionally, applying AS-IV might act as a beneficial anti-cancer effect by downregulating circ_0001615 in CRC cells in vitro. Mechanically, circ_0001615 serves as a sponge for miR-873-5p to affect LASP1 expression. In addition, AS-IV inhibited CRC cell growth in vivo by modulating circ_0001615. Overall, AS-IV could mitigate CRC development, at least in part, through the circ_0001615/miR-873-5p/LASP1 axis. These findings support a theoretical basis for an in-depth study of the function of AS-IV and the clinical treatment of CRC.


Assuntos
Neoplasias Colorretais , MicroRNAs , Saponinas , Triterpenos , Humanos , Animais , Saponinas/farmacologia , Saponinas/uso terapêutico , Triterpenos/farmacologia , Modelos Animais de Doenças , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , MicroRNAs/genética , Proliferação de Células , Proteínas do Citoesqueleto , Proteínas Adaptadoras de Transdução de Sinal , Proteínas com Domínio LIM
16.
Phytomedicine ; 125: 155244, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38216446

RESUMO

BACKGROUND: Panax notoginseng saponins (PNS) are the primary active components of an ancient Chinese herb Panax notoginseng. Hypercoagulable state of blood (HCS) is an independent risk factor and a cause of death in chronic obstructive pulmonary disease (COPD). Several vivo studies have demonstrated the use of PNS preparations for treating COPD with HCS. PURPOSE: This study aimed to systematically evaluate the clinical efficacy and safety of PNS preparations in treating COPD with HCS. STUDY DESIGN: Meta-analysis of the randomized controlled trials (RCTs) was conducted to review data. METHODS: RCTs on the treatment of COPD with HCS and PNS preparations were searched from PubMed, Cochrane Library, Embase, Web of Science, Chinese National Knowledge Infrastructure, Vip Information Database, Wanfang data, and Chinese Biomedical Literature Database. Relevant data were extracted from the included studies and methodological quality evaluation was performed. R language (version 4.2.3) was applied for the meta-analysis. RESULTS: Twenty RCTs involving 1831 patients were analyzed. The results revealed that PNS preparations considerably increased the total clinical efficiency, improved forced expiratory volume in one second percent of predicted, and forced expiratory volume/forced vital capacity ratio. Further, PNS preparations improved fibrinogen, plasma d-dimer, whole blood viscosity at high cut, whole blood viscosity at low cut, and plasma viscosity levels. The results obtained for activated partial thromboplastin and prothrombin times were not statistically significant. Finally, PNS preparations increased partial pressure of oxygen and decreased carbon dioxide pressure. CONCLUSION: This is the first relatively comprehensive systematic review of the clinical efficacy and safety of PNS preparations for treating COPD with HCS. The study revealed that PNS preparations considerably improve lung function, hypoxia, and blood hypercoagulability in patients with COPD and HCS without increasing the risk of hemorrhage and has a good safety profile; therefore, it can be used as a new modulating agent and anticoagulant.


Assuntos
Panax notoginseng , Doença Pulmonar Obstrutiva Crônica , Saponinas , Trombofilia , Humanos , Panax notoginseng/química , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Saponinas/efeitos adversos , Saponinas/uso terapêutico , Trombofilia/tratamento farmacológico , Resultado do Tratamento
17.
Biochem Biophys Res Commun ; 697: 149524, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38252991

RESUMO

Breast cancer (BC) is one of the malignancies threatening the woman's health. Our study aims to explore the underlying mechanism behind the anti-tumor function of Paris saponin VII (PS VII) in BC. Xenografting experiment was conducted to monitor the tumor growth. The Ki67 and 4-HNE expression were analyzed via immunohistochemical assay. After different treatments, the cell viability, proliferation, invasion, and migration capacity of BC cells were measured by the CCK-8, colony formation, transwell, and wound healing assays, respectively. The ratio of GSH/GSSG was measured by the GSH/GSSG ratio detection assay kit. The lipid ROS and Fe2+ levels were quantified by flow cytometry analysis. The expressions of TFR1, ACSL4, Nrf2, and GPX4 were measured via western blotting. Compared with the Ctrl group, the tumor volumes, and Ki67 expression were markedly reduced in PS VII groups, and the BC cell viability was decreased by PS VII treatment in a dose-dependent manner. The colony numbers, invasive cells, and migration rates were also significantly decreased by PS VII treatment. Then, the Nrf2 as well as GPX4 expressions were decreased and TFR1 expression was increased by PS VII treatment in vitro and in vivo, while there was no difference in ACSL4 expression between Ctrl and PS VII groups. Moreover, the above effects of PS VII could not be observed in GPX4 knockdown cells. PS VII can promote ferroptosis to inhibit BC via the Nrf2/GPX4 axis, which innovatively suggests the pro-ferroptosis effect and therapeutic potential of PS VII in BC.


Assuntos
Neoplasias da Mama , Ferroptose , Saponinas , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Ferroptose/efeitos dos fármacos , Dissulfeto de Glutationa , Antígeno Ki-67 , Fator 2 Relacionado a NF-E2 , Saponinas/farmacologia , Saponinas/uso terapêutico
18.
Biochem Biophys Res Commun ; 695: 149451, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38176173

RESUMO

BACKGROUND/OBJECTIVE: DT-13, the principal active component of Mysidium shortscapes from the Liliaceae family, has garnered substantial interest in cancer therapy owing to its potential anticancer properties. This study investigated the effects of DT-13 on the proliferation and apoptosis of human pancreatic cancer cell lines and aimed to elucidate the underlying mechanisms. METHODS: PANC1 and CFPAC1 cells were exposed to DT-13 and their proliferation was assessed using RTCA and clone formation assays. Apoptotic protein expression was analyzed by western blotting, and apoptotic cells were identified by flow cytometry. RNA was extracted from DT-13 treated and untreated PANC1 cells for RNA sequencing. Differentially expressed genes were identified and subjected to GO bioprocess, KEGG pathway analysis, and western blotting. Finally, to evaluate tumor growth, CFPAC1 cells were subcutaneously injected into BALB/c nude mice. RESULTS: DT-13 inhibited proliferation and induced apoptosis of PANC1 and CFPAC1 cells by activating the AMPK/mTOR pathway and suppressing p70 S6K. Moreover, DT-13 hindered the growth of CFPAC1 xenograft tumors in nude mice. CONCLUSIONS: DT-13 effectively inhibited the growth of human pancreatic cancer cells.


Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias Pancreáticas , Saponinas , Animais , Humanos , Camundongos , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Serina-Treonina Quinases TOR/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Saponinas/farmacologia , Saponinas/uso terapêutico
19.
J Am Nutr Assoc ; 43(2): 147-156, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37459747

RESUMO

BACKGROUND: Trigonella foenum-graecum (Fenugreek) is an extensively researched phytotherapeutic for the management of Type 2 diabetes without any associated side effects. The major anti-diabetic bioactive constituents present in the plant are furostanolic saponins, which are more abundantly available in the seed of the plant. However, the bioavailability of these components depends on the method of extraction and hence formulation of the phytotherapeutic constitutes a critical step for its success. OBJECTIVE: The present study reports the efficacy of a novel, patented fenugreek seed extract, Fenfuro®, containing significant amount of furostanolic saponins, in an open-labelled, two-armed, single centric study on a group of 204 patients with Type 2 diabetes mellitus over a period of twelve consecutive weeks. RESULTS: Administration of Fenfuro® in the dosage of 500 mg twice daily along with metformin and/or sulfonylurea-based prescribed antidiabetic drug resulted in a reduction of post-prandial glucose by more than 33% along with significant reduction in fasting glucose, both of which were greater than what resulted for the patient group receiving only Metformin and/or Sulfonylurea therapy. Fenfuro® also resulted in reduction in mean baseline HOMA index from 4.27 to 3.765, indicating restoration of insulin sensitivity which was also supported by a significant decrease in serum insulin levels by >10% as well as slight reduction in the levels of C-peptide. However, in the case of the Metformin and/or Sulfonylurea group, insulin levels were found to increase by more than 14%, which clearly indicated that drug-induced suppression of glucose levels instead of restoration of glucose homeostasis. Administration of the formulation was also found to be free from any adverse side effects as there were no changes in hematological profile, liver function and renal function. CONCLUSION: The study demonstrated the promising potential of this novel phytotherapeutic, Fenfuro®, in long-term holistic management of type-2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Insulinas , Metformina , Saponinas , Trigonella , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose/uso terapêutico , Insulinas/uso terapêutico , Metformina/uso terapêutico , Extratos Vegetais/farmacologia , Saponinas/uso terapêutico , Compostos de Sulfonilureia/uso terapêutico , Método Duplo-Cego
20.
Int Immunopharmacol ; 127: 111324, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38070467

RESUMO

Saikosaponin-d (SSd) is a triterpene saponin from the roots of Bupleurum chinese. Recent studies have revealed its antidepressant activity, but its mechanism involved is unclear. This study's objective was to ascertain how SSd may reduce depression in depressed mice subjected to chronic unpredictable animal stress (CUMS) and to investigate the mechanisms underlying these effects. Models of CUMS depression were established and different groups were treated with SSd and escitalopram. After the last day of administration of the treatment, behavioral tests were performed. ELISA was used to measure the expression of IL-1ß, TNF-α, and IL-18, and western blot was used to measure the presence of proteins associated with NLRP3. Hippocampal neuronal damage was observed using Nissl staining, and NLRP3 ubiquitination assay was performed by immunoprecipitation and gene silencing. An inflammatory cell model was constructed by treating BV2 cells with lipopolysaccharides (LPS) and adenosine triphosphate (ATP) to verify the ubiquitination modification of NLRP3 by SSd. Behavioral tests demonstrated that SSd effectively alleviated depression-like symptoms. SSd should substantially limit the degrees of proteins associated with NLRP3, as properly as limit the harm to hippocampal neurons. Gene silencing results showed that SSd regulates NLRP3 through the E3 ubiquitin ligase MARCHF7. In vitro, SSd remarkably increased the protein expression of K48-linked ubiquitin in inflammatory BV2 cells, while decreasing the protein levels of NLRP3. Our findings suggest that SSd has antidepressant effects in CUMS mice by promoting ubiquitination of NLRP3 to inhibit inflammasome activation and improve the inflammatory state.


Assuntos
Inflamassomos , Ácido Oleanólico/análogos & derivados , Saponinas , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Saponinas/farmacologia , Saponinas/uso terapêutico , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...